ON QUASI-IDEALS AND K-REGULAR IN NEAR SUBTRACTION SEMIGROUPS

¹K.MUMTHA, ²V.MAHALAKSHMI and ³S.USHA DEVI

¹M.Phil scholar, Department of Mathematics, A.P.C.Mahalaxmi college for women, Thoothukudi. <u>mamthakasi8696@gmail.com</u> ²Assintant Professor of Mathematics, A.P.C.Mahalaxmi college for women, Thoothukudi. <u>maha.krishna86@gmail.com</u> ³Assistant Professor of Mathematics, Sri Parasakthi College for Women, Coutrallam. ushadevinathan@gmail.com

Abstract:

In this paper, with a new idea, we define quasi-ideal, K-regular and investigate some of its properties. We characterize quasi-ideal by subalgebra of near subtraction semigroup and K-regular by quasi-ideal. A characterization of quasi-ideals of near subtraction semigroup is given. In this paper we shall introduce K-regular near subtraction semigroups and obtain equivalent conditions for K-regular near subtraction semigroups using quasi-ideals. This concept motivates the study of different kinds of new ideals in algebraic graph theory especially ideals in subtraction bialgebra and fuzzy algebra.

Key words: Quasi-ideal, s-near subtraction semigroup, property (α), K- regular.

1. Introduction

B.M. Schein [10] considered systems of the form (X; o; -), where X is a set of functions closed under the composition "o" of function (and hence (X; o) is a function semigroup) and the set theoretic subtraction "-" (and hence (X; -) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible function. B.Zelinka [11] discussed a problem proposed by B.M.Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y.B.Jun et al. [4] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. For basic definition one may refer to Pilz[8]. In ring theory the notation of quasi-ideal introduced by O. Steinfiled in [9].

2. Preliminaries on near Subtraction Algebra

Definition:2.1

A non empty set X together with binary operation "-" is said to be a **subtraction algebra** if it satisfies the following:

© 2019 JETIR February 2019, Volume 6, Issue 2 i. x - (y - x) = x. x - (x - y) = y - (y - x).ii. (x - y) - z = (x - z) - y. for every x, y, z \in X. iii.

Definition:2.2

A non empty set X together with binary operations "-" and "." is said to be a near subtraction **semigroup** if it satisfies the following:

- i. (X, –) is a subtraction algebra.
- ii. (X, \cdot) is a semigroup.
- (x y)z = xz yz, for every x, y, z \in X. iii.

Definition:2.3

and ". " is said to be a near subtraction A non empty set X together with binary operations semigroup (right) if it satisfies the following:

- i. (X, -) is a subtraction algebra.
- (X, \cdot) is a semigroup ii.
- (x y)z = xz yz, for every x, y, $z \in X$. iii.

Definition:2.5

A non empty subset s of a subtraction algebra X is said to be subalgebra of X, if $x - x' \in X$ wheneever $x, x' \in S$.

Definition:2.6

Let (X, -) be a near subtraction semigroup. A non empty subset I is called

- i. A left ideal if I is a sub algebra of (X, -) and $XI \subseteq I$.
- A **right ideal** if I is a subalgebra of (X, -) and $IX \subseteq I$. ii.
- iii. An ideal if I is both left and right ideal.

Definition:2.8

We say that X is an s(s') near subtraction semigroup if $a \in Xa(aX)$, for all $a \in X$.

Definition: 2.9

A s-near subtraction semigroup X is said to be \overline{s} –near subtraction semigroup if $a \in aX$, for $a \in X$.

b

0

b

с

0

с

а

0

а

Let x be a near subtraction semigroup. Given two subsets A and B of X, $AB = \{ab/a \in A, b \in B\}$. Also we define another operation "*" by, $A * B = \{ab - a(a' - b), a, a' \in A, b \in B\}$.

Definition:2.1

A near subtraction semigroup X is said to be **subcommutative** if aX = Xa, for every $a \in X$.

Definition:2.14

An element aX is said to be regular if for each $a \in X$, $a = aba$, for some $b \in X$. Definition:2.15		0	a	b	с		
		0	0	0	0		
		a	0	С	b		
		b	0	0	b		
A near subtraction semigroup X is said to have	С	С	0	С	0		
property (α) if x is a subalgebra of (X,-), for every x \in							
X.	0	a	b	c			
0	0	0	0	0			

0

0

0

a

b

с

Definition: 2.16

A sub algebra S of (X, -) is called an left(right)Xsubalgebra of X if $XS \subseteq S(SX \subseteq S)$.

Definition:2.17

A near subtraction semigroup X is said to be two sided if every left X- subalgebra is right Xsubalgebra and viceversa.

3. Quasi-ideals and K-regular near subtraction semigroups

Definition:3.1

A subalgebra Q of (X,-) is said to be quasi-ideal of X if $QX \cap XQ \cap X * Q \subseteq Q$.

Example:3.1.1

Let $X = \{0, a, b, c\}$ in which " - " and "." are defined by,

clearly {0, a} is quasi- ideal of X.

Definition:3.2

A near subtraction semigroup X is called K-regular near subtraction semigroup if $a \in \langle a \rangle_r X < a \rangle_l$, for any $a \in X$, Where $\langle a \rangle_r (\langle a \rangle_l)$ is the right (left) X-subalgebra generated by $a \in X$.

JETIRAB06161	Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org	839
--------------	--	-----

Every regular near subtraction semigroup is K-regular. But the converse is not true.

Example:3.3

Let $X = \{0,1,2,3\}$ in which "-" and "." are defined by,

-	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

•	0	1	2	3	
0	0	0	0	0	
1	1	1	1	0	Ę
2	2	2	2	0	
3	3	3	3	0	

Clearly X is K-regular. But not regular, since $3\notin 3.X.3 = \{0\}$.

Proposition:3.4

The set of all quasi-ideals of a near subtraction semigroup X form a moore system on X.

Proof:

Let Q {i \in I} be a set of all quasi-ideals in X. Let Q= \cap Q. Then $QX \cap QX \cap X * Q \subseteq Q_iX \cap XQ_i \cap XQ_i \cap QQ_i$, for all i \in I.there for $QX \cap XQ \cap X * Q \subseteq Q$. (ie) Q is a quasi-idealof X.

Proposition:3.5

If Q is a Quasi-ideal of a near subtraction semigroup X and S is a semigroup of X, then $Q \cap S$ is a qusai-ideal of S.

Proof:

Since Q is a quasi-ideal of X, $QX \cap XQ \cap X * Q \subseteq Q$.

Let $C=Q \cap S$. Then,

 $CS \cap SC \cap S * C = (Q \cap S)S \cap S(Q \cap S) \cap S * (Q \cap S) \subseteq QS \cap SQ \cap S * Q \cap S \subseteq QX \cap XQ \cap X * Q \cap S \subseteq Q \cap S = C.$ There fore $CS \cap SC \cap S * C \subseteq C.$

(ie) $B \cap S$ is a quali-ideal of S.

Proposition:3.6

Let X be zero-symmetric near subtraction semigroup. A subalgebra Q of X is a quasi-ideal $QX \cap XQ \subseteq Q$.

Proof:

Let Q be a quasi-ideal of X Then $QX \cap XQ \cap X * Q \subseteq Q$. since X is zero-symmetric, $XQ \subseteq X * Q$. Q. Therefore $QX \cap XQ = (QX \cap XQ) \cap (QX \cap XQ) = (QX \cap XQ) \cap XQ \subseteq QX \cap XQ \cap X * Q \subseteq Q$. Conversely, $QX \cap XQ \subseteq Q$. There fore $QX \cap XQ \cap X * Q \subseteq QX \cap XQ \subseteq Q$.(ie) Q is a quasi-ideal of X.

Proposition:3.8

Let X be a near subtraction semigroup. Then the following are equivalent:

- (i) X is k-regular
- (ii) $RL = R \cap L$, for every right X-subalgebra R of X and for every left X-subalgebra L of X.

(iii)For every pair of element a, b of X, $\langle a \rangle_r \cap \langle b \rangle_l = \langle a \rangle_r \langle b \rangle_l$

(iv)For any element a of X, $\langle a \rangle_r \cap \langle b \rangle_l = \langle a \rangle_r \langle b \rangle_l$

Proof:

(i)⇒(ii):

```
Clearly RL \subseteq R \cap L. If x \in R \cap L, then x \in \langle x \rangle_r X \langle x \rangle_l \subseteq RXL \subseteq RL. Thus R \cap L = RL.
```

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (iv)$ are trivial.

(iv) ⇒(i):

Let $a \in X$. then $\langle a \rangle_r \cap \langle a \rangle_l = s \langle a \rangle_r \langle a \rangle_l$. Since $a \in \langle a \rangle_r \cap \langle a \rangle_l$, a = bc, for some $b \in \langle a \rangle_r$ and $c \in \langle a \rangle_l$. Similarly b = de, for some $d \in \langle b \rangle_l$, $e \in \langle b \rangle_l$. Thus $a = dec \in \langle a \rangle_r X \langle a \rangle_l$. (ie) X is K-regular.

Proposition:3.9

Let X be a s-near subtraction semigroup with property (α). Then the following are equivalent :

- (i) X is K-regular.
- (ii) X is regular.
- (iii) For every quasi-ideal Q, QPQ = Q, for some subset P of X.

PT001:

 $(\mathbf{i}) \Rightarrow (\mathbf{ii})$:

Let $x \in X$. Then we have $x \in \langle x \rangle_r X \langle x \rangle_l$. Since $x \in \langle x \rangle_r, xX$ is a right X-subalgebra of X and $xX \subseteq \langle x \rangle_r$. since X is a \bar{s} -near subtraction semigroup $x \in xX$ and so $\langle x \rangle_r \subseteq xX$. Thus $\langle x \rangle_r = xX$. Similarly $\langle x \rangle = Xx$.

Hence $x \in \langle x \rangle_r X \langle x \rangle_l \subseteq xXx$. (ie)X is regular.

(ii)⇒ (iii):

Since X is regular, $Q \subseteq QXQ$, for every Quasi-ideal Q of X. Also $QXQ \subseteq Q$.

Thus Q = QXQ.

(iii)⇒ (i):

Since X is a \bar{s} -near subtraction semigroup. $\langle x \rangle_r = xX$ and $\langle x \rangle_l = Xx$, for $x \in X$. Thusfor $x \in X$, $\langle x \rangle_r \cap \langle x \rangle_l = \langle x \rangle_r \cap \langle x \rangle_l P \langle x \rangle_r \cap \langle x \rangle_l \subseteq \langle x \rangle_r X \langle x \rangle_l$. (*i.e.*) $x \in X \langle x \rangle_r \langle x \rangle_r \langle x \rangle_r$

. Hence X is K-regular.

References:

- [1] J.C.Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Mass.1969.
- [2] P.Dheena and G.Satheesh Kumar On Strongly Regular near subtraction semigroups, Commun. Korean Math. Soc. 22(2007), No.3, pp.323-330.
- [3] Y.B.Jun and H.S.Kim, On ideals in subtraction algebras, Sci. Math.Jpn. 65(2007), no.1,129-134.
- [4] Y.B.Jun, H.S.Kim and E.H.Roh, Ideal theory of subtraction lgebras, Sci. Math.Jpn.01(2005) no.3, 459-464.
- [5] K.H.Kim, On subtraction semigroups, Scientiate Mathematicae Japonicae 62(2005), no.2, 273-280.
- [6] C.V.L.N Murty, Generalised –near field, croc. Edinburgh Math.soc. 27(1984), 21-24.
- [7] S.Maharasi, V.Mahalakshmi, On Bi-ideals of Near-Subtraction Semigroup, Research India Publications, New Delhi ISSN 0973-6964 Volume 6, Number 1(2013)
- [8] Pilz Gunter, Near-Rings, North Holland, Amsyterdam, 1983.
- [9] O.Steinfield. Acta.Sci. Math. (Szeged) 17(1956), 170-80.

[10] B.M.Schein, Difference

semigroups, Comm Algebra

20(1992), no8, 2153-2169.

[11] B.Zelinika, subtraction

semigroups, Math.Bohem.

120(1995), no.4, 445-447.